I am listing time series for a given asset, and get a lot of results. I need to filter based on the time series external ID, but the only option is by using the “external_id_prefix” argument to the list function. So I build up the prefix left to right. Somewhere in the external id is a parameter that I do not care about, and after comes a new parameter that I want a particular value of. Concrete example of external IDs:
IAA_Miros_Weather_Data_WIA_008
IAA_Miros_Weather_Data_WIB_008
IAA_Miros_Weather_Data_WIC_008
IAA_Miros_Weather_Data_WID_008
IAA_Miros_Weather_Data_WIE_008
I am interested in only getting time series with external IDs that contain “_WI” and that end with “008”. Is there a way to list time series with a wildcard? Something like this:
client.time_series.list(
asset_ids=[my_asset_id],
limit=None,
external_id_prefix="IAA_Miros_Weather_Data_WI*_008",
partitions=4
)
I could of course obtain the relevant time series by filtering after the fact. Something like this
result = client.time_series.list(
asset_ids=[my_asset_id],
limit=None,
external_id_prefix="IAA_Miros_Weather_Data_WI",
partitions=4
).to_pandas()
df = result.loc[result.externalId.str.endswith("008")]
Or is there functionality already available?
Sincerely,
Anders Brakestad